page hit counter An experimental census of retrons for DNA production and genome editing - CNNNEWS.NEWS

An experimental census of retrons for DNA production and genome editing

An experimental census of retrons for DNA production and genome editing

Science and Nature news Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information or will be made available from the authors upon request. Sequencing data associated with this study are available on National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) (PRJNA1047666)34.

Code availability

Custom code to process or analyze data from this study is available via GitHub (https://github.com/Shipman-Lab/Retron-Census)35.

References

  1. Yee, T., Furuichi, T., Inouye, S. & Inouye, M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38, 203–209 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  2. Inouye, S., Hsu, M. Y., Eagle, S. & Inouye, M. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56, 709–717 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  3. Hsu, M. Y., Eagle, S. G., Inouye, M. & Inouye, S. Cell-free synthesis of the branched RNA-linked msDNA from retron-Ec67 of Escherichia coli. J. Biol. Chem. 267, 13823–13829 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  4. Shimamoto, T., Inouye, M. & Inouye, S. The formation of the 2′,5′-phosphodiester linkage in the cDNA priming reaction by bacterial reverse transcriptase in a cell-free system. J. Biol. Chem. 270, 581–588 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  5. Shimamoto, T., Kawanishi, H., Tsuchiya, T., Inouye, S. & Inouye, M. In vitro synthesis of multicopy single-stranded DNA, using separate primer and template RNAs, by Escherichia coli reverse transcriptase. J. Bacteriol. 180, 2999–3002 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  6. Simon, A. J., Ellington, A. D. & Finkelstein, I. J. Retrons and their applications in genome engineering. Nucleic Acids Res. 47, 11007–11019 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  7. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  8. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  9. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems. Nature 609, 144–150 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  10. Mestre, M. R., González-Delgado, A., Gutiérrez-Rus, L. I., Martínez-Abarca, F. & Toro, N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res. 48, 12632–12647 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  11. Wang, Y. et al. Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism. Nat. Microbiol. 7, 1480–1489 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  12. Palka, C., Fishman, C. B., Bhattarai-Kline, S., Myers, S. A. & Shipman, S. L. Retron reverse transcriptase termination and phage defense are dependent on host RNase H1. Nucleic Acids Res. 50, 3490–3504 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  13. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  14. Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175, 544–557 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. Bhattarai-Kline, S. et al. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217–225 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  16. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  17. Lee, G. & Kim, J. Engineered retrons generate genome-independent protein-binding DNA for cellular control. Preprint at bioRxiv https://doi.org/10.1101/2023.09.27.556556 (2023).

  18. Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  19. Kong, X. et al. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell 12, 899–902 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  20. Zhao, B., Chen, S. A., Lee, J. & Fraser, H. B. Bacterial retrons enable precise gene editing in human cells. CRISPR J. 5, 31–39 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  21. Liu, W. et al. Retron-mediated multiplex genome editing and continuous evolution in Escherichia coli. Nucleic Acids Res. 51, 8293–8307 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  22. Fishman, C. B. et al. Continuous multiplexed phage genome editing using recombitrons. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02370-5 (2024).

  23. González-Delgado, A., Lopez, S. C., Rojas-Montero, M., Fishman, C. B. & Shipman, S. L. Simultaneous multi-site editing of individual genomes using retron arrays. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01665-7 (2024).

  24. Mosberg, J. A., Lajoie, M. J. & Church, G. M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  25. Wimberger, S. et al. Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing. Nat. Commun. 14, 4761 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  26. Lampson, B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  27. Kim, K., Jeong, D. & Lim, D. A mutational study of the site-specific cleavage of EC83, a multicopy single-stranded DNA (msDNA): nucleotides at the msDNA stem are important for its cleavage. J. Bacteriol. 179, 6518–6521 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  28. Lease, R. A. & Yee, T. Early events in the synthesis of the multicopy single-stranded DNA–RNA branched copolymer of Myxococcus xanthus. J. Biol. Chem. 266, 14497–14503 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  29. Azam, A. H. et al. Viruses encode tRNA and anti-retron to evade bacterial immunity. Preprint at bioRxiv https://doi.org/10.1101/2023.03.15.532788 (2023).

  30. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  31. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  32. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  33. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  34. Khan, A. G. et al. An experimental census of retrons for DNA production and genome editing. www.ncbi.nlm.nih.gov/bioproject/PRJNA1047666/ (2024).

  35. Fang, R. & Shipman, S. Shipman-Lab/Retron-Census. GitHub github.com/Shipman-Lab/Retron-Census (2024).

Download references

Acknowledgements

This work was supported by funding from the National Science Foundation (MCB 2137692), the National Institute of Biomedical Imaging and Bioengineering (R21EB031393) and the National Institute of General Medical Sciences (1DP2GM140917), with research support from Retronix Bio. S.L.S. is a Chan Zuckerberg Biohub San Francisco Investigator and acknowledges additional funding support from the L.K. Whittier Foundation and the Pew Biomedical Scholars Program. A.G.-D. is supported by the California Institute of Regenerative Medicine (CIRM) scholar program. S.C.L. is supported by a Berkeley Fellowship for Graduate Study. R.F.F. is supported by a UCSF Discovery Fellowship. K.D.C. is supported by a National Science Foundation Graduate Research Fellowship and a UCSF Discovery Fellowship. We would like to thank A. Pico and the Gladstone Bioinformatics Core for assistance with data database management, as well as K. Zhang and D. Wen for comments on the manuscript.

Author information

Author notes

  1. These authors contributed equally: Asim G. Khan, Matías Rojas-Montero, Alejandro González-Delgado.

Authors and Affiliations

  1. Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA

    Asim G. Khan, Matías Rojas-Montero, Alejandro González-Delgado, Santiago C. Lopez, Rebecca F. Fang, Kate D. Crawford & Seth L. Shipman

  2. Graduate Program in Bioengineering,

 » …
Read More